中国发射的世界首颗量子卫星“墨子号”,到底是干什么用的?

北京时间 8 月 16 日下午 1 时 40 分,中国科学院国家空间科学中心研制的“墨子号”卫星,在中国的酒泉卫星发射中心成功发射升空。“墨子号”是一颗量子卫星,也是世界上第一颗量子卫星。

我们听说过气象卫星、天文卫星、通讯卫星、导航卫星,军事用途卫星甚至搭载武器的“杀手”卫星——恐怕大多数人都没听说过“量子卫星”是个什么玩意儿……


 

量子卫星是什么?能做什么?怎么做?

 

墨子号应该可以算作通讯卫星当中的一种。只是,和传统的通讯卫星直接传递信息不同,墨子号的工作不是传递信息本身,而是分配“密钥”——解码加密信息的“钥匙”。

这把密钥的加密性能,比历史上人类使用过的所有密码本、阿兰·图灵造计算机想要破译的 Enigma 密码、Touch-ID, “两步验证”甚至 PGP 系统还要高,可以说不在一个级别上。

以往的密码/密钥,要么是固定的,要么非固定但按照一定的逻辑变化,从而有迹可循,让人们可以使用计算机技术或通过社会工程学来破译。量子密码的安全型提到了前所未有的新高度,几乎无法破解。

它利用了量子科学无比浪漫的基本原理:

两颗纠缠的光子被拆散之后,无论相距多远总会心灵感应,一个形态发生变化,另一个会像镜子一样同步变化。

光子组成了密钥,墨子号就是向地面发射光子的卫星——一颗量子密钥分发卫星。

墨子号随长征-2D 运载火箭升空。卫星将进入 500 千米太阳同步轨道

墨子号随长征-2D 运载火箭升空,卫星将进入 500 千米太阳同步轨道。

举个例子,打仗,A 地长官向 B 地前线部队发送军令。墨子号可以将许多组每组两颗纠缠态光子拆开,发射给 A 和 B 两地。当 A 地“观测”这些光子,就像用手去触摸了它们一样,会让这些光子发生形态变化。同时,发射到 B 地的光子也会产生一模一样变化。把这些光子的形态,按照固定顺序记录下来,就变成了一组密钥。A 地按照这个密钥加密发送的信息,B 地手里已经拿到了解码的密钥,能够顺利解密信息。

怎么保证信息不被第三方破译呢?需要用到量子科学的两条基本特性:“量子态不可克隆”原理,和“海格堡测不准”原理。

不可克隆:世界上就算有长相一模一样的人,也绝对没有第三颗一模一样的光子。只有 A 和 B 知晓目标光子的状态,世界上也没有能够完美克隆目标光子状态的机器。不完美克隆是可以的——然而并没有什么用,因为复原出来的密钥早已千差万别。

测不准:A 摸了光子,改变了光子的状态并记录下来。谁要是再摸,有很大可能状态又变了。理论上,如果第三方想要截取密钥,必须先截获光子,再去观测它,结果光子就变化了。结果 B 要么没收到光子,要么收到光子摸完去跟 A 校验,发现怎么不一样啊,就明白了,咱们被人监听了。这其实没关系,两边一对发现密钥失守,这条军令大不了咱们不发了,请墨子号给咱们再发一个新密钥吧,确认没问题再传递信息。

就算有人能一直截获光子,充其量也是掌握了保险箱的钥匙而已——箱子里可以什么东西都没有嘛。

上面是对太空量子加密通讯的一个非常粗浅的解释,在专业人士看来不一定完全准确,但应该足够让你明白墨子号是干什么,怎么干的。

但这一切仍是个理论可行,还未在真实世界里验证过的尖端设想。

墨子号的意义

 

陆地上的量子通讯,倒是已经得到了验证。

包括中国和美国在内的一些国家,早就建立了陆基的量子通讯线路,也就是发射、传输和接收全都在陆地上,通过光纤传输。在中国,“京沪保密线”(北京-济南-合肥-上海量子通讯干线)已经落成,使用了中国量子科学泰斗人物,中科大潘建伟教授研发的中继器,能够顺利将光子传送数百公里的距离。

潘建伟教授

潘建伟教授

然而,光纤并非一种良好的光子传播介质。实验室里最好的光纤能承载带宽高达数十 Tbps 的光信号,也能让你在中国的家里用 4k 清晰度观看几秒前里约奥运赛场上的画面,却无法在量子通讯的范畴里完好无损地传播一个光子。效果已经买过了量子加密最低的门槛,但还不够好——你可以理解为,就算导电性能最好的导体也会自带电阻。

事实上,光纤不完美,地面空气也不完美。这让不完美不成活的量子科学家们很是苦恼:视野必须转向太空!

奥地利量子科学家,维也纳大学教授安东·蔡林格(Anton Zeilinger),在量子科学领域比潘建伟教授资历更高,也是潘的导师。他早在 2001 年跟欧洲航天局(ESA)提出要搞量子卫星,遗憾的是经费一直批下不来。

后来中国方面提出并确定了量子卫星计划,蔡林格博士现在同潘建伟教授一起在“墨子号”项目组工作。

最近 ESA 转过神来,决定把自己不输给中国的技术利用起来,也搞一颗量子卫星发到太空里。知乎用户“宋祁朋”介绍,在前面提到的量子通讯具体实现技术上,中欧(主要是法国)之间是两种不同技术并行发展。很难说谁更厉害,但合作起来肯定是棒棒的。

墨子号是科学家的第一次机会,能够去验证前面说的那一大段复杂而又酷炫的技术,究竟只是说说,还是真的能用。更别提卫星发上去了,机器能不能正常运转仍有待“观测”——当然,科学家负责最坏的打算,我们负责最好的期待。

如果太空量子通信真的实现了,我们能用它做些什么?

 

在最近的未来,如果量子加密通信能够为我们所用,可以用它来更安全地发送信息。只有信息的两端知道信息的内容,服务器端无法获知也无法保存内容,Telegram、PGP 之类的也许可以下岗了。

进一万步,如果能直接将光子作为信息本身的传递工具,信息也就没有“传递”一说了,而是是跨越时、空,直接呈现出来,真正的 real time~(还记得《三体》里的“智子”么?)

量子通信就是这样的酷炫,但其根本原理仍超过人类认知能力和理解范围。两个纠缠的光子凭什么总能保持相同的状态?一个变了另一个又是怎样知道的?如果人类能够在实现量子加密、量子信息通讯的同时或之后,得到这些问题的答案,距离宇宙终极原理就又近了一步。

不到那时,谁又知道它对人类来说,真正意味着什么呢?

 

延伸阅读:论文《量子科学卫星》,作者潘建伟

订阅更多文章